УДК 539.375

В.А. КРЫВЕНЬ, д-р физ.-мат. наук, Тернопольский гос. техн. ун-т

РАЗВИТИЕ ПОЛОС ПЛАСТИЧНОСТИ ПРИ СДВИГЕ СЖАТОГО МАССИВА, СОДЕРЖАЩЕГО ПАРАЛЛЕЛЬНУЮ СИСТЕМУ ТРЕЩИН

Исследовано узкополосную локализацию пластических деформаций у вершин параллельной системы равных и равноудаленных трещин сдвига в сжатом массиве. Учтено влияние сил трения берегов при раскрытии трещин. Обоснована возможность моделирования пластических деформаций при вершине трещины одной пластической полосой. Получены зависимости длин полос от величины нагрузки и уровня силы трения берегов трещины.

При деформировании тел с концентраторами напряжений в некоторых конструкционных материалах и грунтах наблюдается локализация пластических деформаций (ПД) в тонких полосах сдвига. Прежде всего, это имеет место при наличии на диаграмме S - e четко выраженного горизонтального участка и резкого перехода от упругого состояния к пластическому [1, 2]. Узкополосная локализация не альтернативой континуальному распределению ПЛ. является Доказано [3], что при устремлении количества линий к бесконечности приходим к непрерывному распределению ПД, как частному случаю дискретно-линейчатого. То есть, дискретно-линейчатая пластическая зона также дает возможность приближенного определения континуальной зоны, точность которого повышается с увеличением количества линий.

Некоторые механизмы реализации дискретной структуры ПД изучались в работах [4-5]. Показано [5], что локализации ПД в плоскости трещины сдвига благоприятствует взаимодействие берегов трещины при ее раскрытии. Можно ожидать, что взаимодействие берегов окажет существенное влияние на формирование дискретнолинейчатой пластической зоны. При моделировании континуальной зоны дискретно-линейчатой количество линий, обеспечивающее требуемую точность приближения, также может зависеть от степени взаимодействия берегов трещины.

Пусть неограниченное, идеально упругопластическое тело, находящееся в условиях всестороннего сжатия, содержит систему параллельных трещин $-l \le x \le l$, y = 2nh $(n \in Z)$, $-\infty < z < \infty$. Дополнительно к сжатию деформирование тела обусловлено действующими на бесконечности сдвиговыми усилиями $t_{yz} = t_{\infty}$, $t_{xz} = 0$. Раскрытие трещин сопровождается трением берегов, вследствие которого внешние напряжения на берегах трещин

В.А. Крывень

являются ненулевыми. Примем эти напряжения постоянными и равными t_0 ($t_0 < k$). При $t_{\infty} > t_0$ вследствие концентрации напряжений у вершин трещин возникнут ПД, которые будем считать локализованными в узких полосах с центрами в вершинах трещин. Углы, образуемые полосами с трещиной, считаем известными, а

Рис. 1.

длины полос – подлежащими определению. На рис. 1 в полуслое $0 \le x < \infty$, -h < y < h, $-\infty < z < \infty$ (период задачи) показана зона, образованная тремя полосами

Формализация задачи. В данном случае напряженнодеформированное состояние полностью определяется смещением w(x, y) вдоль оси аппликат. Две ненулевые компоненты тензора напряжений выражаются

формулами $t_{xz} = m \partial w / \partial x$ и $t_{yz} = m \partial w / \partial y$ (m – модуль сдвига). Смещение w(x, y) антисимметрично относительно каждой линии y = nh ($n \in Z$) и симметрично относительно оси ординат, поэтому функцию w(x, y) достаточно определить в полуполосе $x \ge 0$, $0 \le y \le h$ (область D_0). В пластических полосах имеет место проскальзывание с образованием тангенциального разрыва смещения (функция w(x, y) терпит разрыв). В каждой точке полос должно выполняться условие пластичности: $t_{xz}^2 + t_{yz}^2 = k^2$ (k – предел текучести при сдвиге).

Условимся считать первой полосу, составляющую наименьший берегом трещины. Остальные с верхним полосы угол a_1 перенумеруем против часовой стрелки и обозначим: a_2 – угол между первой и второй полосами,..., a_n – угол между n-1 полосой и продолжении трещины развивающейся п-ой на полосой пластичности. Обозначим как $d_1, d_2, ..., d_n$ длины первой, второй и т.д. центральной *п*-ой полосы.

Вследствие условий равновесия и закона Гука функция $t(z) = t_{yz}(x, y) + it_{xz}(x, y)$ является аналитической в упругой части тела.

Для определения напряженно-деформированного состояния сформулируем краевую задачу для функции t(z) в области D,

являющейся областью D_0 , разрезанной по отрезкам пластических сдвигов.

Вследствие симметрии получаем:

$$Imt(z) = 0 \quad ((z = x + ih, x \ge 0) \mathbf{U})$$
$$\mathbf{U}(z = iy, 0 \le y \le h) \mathbf{U}(z = x, x > l + d_n)$$
(1)

На берегах трещины напряжение t_{yz} постоянное и равное t_0 , поэтому

$$\operatorname{Re} t(z) = t_0 \quad (z = x, 0 \le x \le l).$$
 (2)

На берегах, соответствующих пластическим полосам разрезов в области *D*, выполняется условие пластичности, поэтому

$$|t(z)| = k$$
 $(r = r \exp(i(p - a_j \pm 0)), 0 \le r \le d_j), (j = 1, n).$ (3)

Примем условие прямолинейного развития полос [3]: в концевых точках полос площадка максимального касательного напряжения является касательной к полосам:

$$\max_{n} t_{nz} = t_{mz}, \qquad (4)$$

где m – единичный, нормальный к полосе вектор.

Напряженно-деформированное состояния на бесконечности задано соотношением

$$\lim_{z \to \infty} t(z) = t_{\infty}.$$
 (5)

Функция t(z) является аналитической и однолистной в области D, вследствие чего она конформно отображает эту область на часть круга $|t| \le k$, Re $t \ge t_0$, Im $t \ge 0$ (область G, рис. 2). При этом имеет место следующее соответствие точек областей D G: И $z = \infty + ih \rightarrow t = t_{\infty}, \ z = 0 \rightarrow t = t_0, \ z = l - 0 + i0 \rightarrow t = t_0 - i\sqrt{k^2 - t_0^2},$ $z = d_n + i0 \rightarrow t = k$. Часть границы области D $((z = x + iy, 0 \le x < \infty) \cup (z = iy, 0 \le y \le h))$ отображается в отрезок $(\operatorname{Im} t = 0, t_0 \le \operatorname{Re} t \le t_\infty);$ отрезок $(z = x, 0 \le x \le l)$ – В Re $t = t_0, -\sqrt{k^2 - t_0^2} \le \text{Im} t \le 0$. Берега разрезов, соответствующих пластическим полосам, отображаются дугу окружности В $(|t| = k, -\arccos(t_0/k) \le \arg t \le 0).$ Кроме того, вследствие (4), отображение t(z) должно также удовлетворять условию

$$\arg t(d_j \exp(ia_j)) = -a_j.$$
(6)

Исследование полос пластичности у вершин трещин. Решение краевой задачи (1)-(5) сводится к построению данного конформного отображения. Введем вспомогательную комплексную плоскость t, в которой областям D и G соответствует верхняя полуплоскость $H = {\text{Im } t \ge 0}$ (рис. 2, указано соответствие точек на границе областей G и H).

Функцию t(z) будем искать в параметрическом виде:

Рис. 2.

 $t = t(t), \ z = z(t) \ (t \in H).$ (7)

Начальным точкам полос в плоскости *н* соответствуют точки $t = a_j$ $(j = \overline{0, n-1}); a_0 = t_D < a_1 < ... < a_{n-1} < 0$. Вершинам полос – точки $t = b_j$ $(j = \overline{1, n-1}); a_{j-1} < b_j < a_j$.

Функцию t(t) находим композицией элементарных отображений:

$$t(t) = k \frac{t_6(t) \exp(iy_0) + \exp(-iy_0)}{t_6(t) + 1},$$
(8)

где
$$t_6(t) = t_5(t)^{y_0/p}$$
, $t_5(t) = (t_3(t) + M)/(t_3(t) - M)$, $t_3(t) = i\sqrt{t/(t+1)}$,

$$M = -tg\left(\frac{p}{2y_0}\left(2arctg\frac{\sqrt{k^2 - t_0^2}}{t_\infty - t_0} - p\right)\right), y_0 = \arccos(t_0/k).$$

Здесь и далее под z^q (0 < q < 1) понимаем аналитическую в верхней полуплоскости функцию, принимающую вещественные и положительные значения при действительных и положительных значениях z.

Из формулы (8) при
$$t = k \exp(iy)$$
 ($y \in (-y_0, 0)$) получаем

$$t(y) = -\frac{c^2(y)}{c^2(y)+1},$$
(9)

где

$$c(\mathbf{y}) = M\left(\sin^{\frac{p}{y_0}} \frac{y_0 + \mathbf{y}}{2} - \sin^{\frac{p}{y_0}} \frac{y_0 - \mathbf{y}}{2}\right) / \left(\sin^{\frac{p}{y_0}} \frac{y_0 + \mathbf{y}}{2} + \sin^{\frac{p}{y_0}} \frac{y_0 - \mathbf{y}}{2}\right).$$

Поэтому, и вследствие соотношения (6) имеем:

$$b_j = -c^2(a_j)/(c^2(a_j)+1).$$

В плоскости т начальной точке первой полосы соответствует $t = k \exp(-iy_0)$, поэтому $t_D = -M^2/(M^2 + 1)$.

Отображение *z*(*t*) найдем при помощи преобразования Кристоффеля-Шварца:

$$z(t) = K \int_{-1}^{t} \frac{\prod_{j=1}^{n-1} (h-b_j) dh}{(h-t_B)^{1/2} (h+1)^{1/2} (h-t_D)^{1-a_1/p} \prod_{j=1}^{n-1} (h-a_j)^{1-a_{j+1}/p} dh}, \quad (10)$$

где t_B – соответствующая угловой точке z = ih области D точка плоскости t, $K = l / \int_{-1}^{t_D} F(h) dh$, F(h) – модуль подынтегральной

функции.

Неизвестные параметры t_B , a_j $(j = \overline{1, n-1})$ найдем из условий обеспечения требуемого соотношения высоты h слоя и длины l трещины, а также равенства длин берегов разрезов при отображении (10):

$$\begin{cases} l \int_{t_B}^{-1} F(h) dh = h \int_{-1}^{t_D} F(h) dh, \\ l \int_{a_{j-1}}^{b_j} F(h) dh = h \int_{b_j}^{a_j} F(h) dh \quad (j = \overline{1, n-1}). \end{cases}$$
(11)

Решение последней системы получено с помощью следующего итерационного алгоритма [7]:

В.А. Крывень

$$\begin{cases} a_{j}^{(m+1)} = a_{j}^{(m)} + \frac{l'_{j} - l''_{j}}{l'_{j} + l''_{j}} (a_{j}^{(m)} - b_{j}), \\ t_{B}^{(m+1)} = t_{B}^{(m)} + \frac{l'/h' - l/h}{l'/h' + l/h} (t_{D} + 1) \quad (m = 0, 1, ...), \end{cases}$$
(12)

где
$$l'_{j} = \int_{a_{j-1}^{(m)}}^{b_{j}} F^{(m)}(h) dh$$
, $l''_{j} = \int_{b_{j}}^{a_{j}^{(m)}} F^{(m)}(h) dh$, $l' = \int_{-1}^{t_{D}} F^{(m)}(h) dh$,
 $h' = \int_{t_{B}}^{-1} F^{(m)}(h) dh$, $t_{B}^{(0)} = -2$, $a_{j}^{(0)} = (b_{j} + b_{j+1})/2 \ (j = \overline{1, n-2})$,
 $a_{j}^{(0)} = b_{j} / 2$, $F^{(m)}(h)$, арцяется функцией $F(h)$, в которой a_{j}

 $a_{n-1}^{(0)} = b_{n-1}/2$, $F^{(m)}(h)$ является функцией F(h), в которой a_j заменены на $a_j^{(m)}$.

Длины *d*_j полос пластичности определяются теперь так

$$d_{j} = \int_{a_{j-1}}^{b_{j}} F(h) dh \quad (j = \overline{1, n-1}), \ d_{n} = \int_{a_{n-1}}^{0} F(h) dh.$$
(13)

В табл. 1 приведены результаты вычислений длин полос для пучка, состоящего из трех полос, при различных значениях силы трения t_0 и нагрузок t_{∞} , для h = l. Угол между центральной и боковой полосами принят равным (2/3) $\operatorname{arccos}(t_0/k)$.

Таблица 1.

	t_{∞}/k		
t_0/k	0,3	0,6	0,9
0	0,05263 0,03631	0,31440 0,09789	1,22646 0,12710
0,25	0,00283 0,00114	0,17339 0,04200	1,02453 0,07707
0,5		0,03011 0,00407	0,76153 0,03342
0,75			0,33840 0,00407

Отношение длин центральной и боковой полос возрастает с увеличением нагрузки. В случае $t_0 = 0,6k$ и $t_{\infty} = 0,9k$ длина центральной полосы превышает длину боковой более, чем в 80 раз.

Такая особенность соотношений длин полос пучка отражает тенденцию увеличения протяженности континуальной пластической зоны в направлении трещины при увеличении нагрузки и при увеличении силы трения [6, 7]. Поэтому при значительном трении берегов трещины имеются основания для моделирования континуальной пластической зоны одной полосой. Для этого случая функцию z(t) можно получить в замкнутом виде композицией элементарных отображений:

$$z(t) = \frac{2h}{p} \ln \left(\sqrt{\frac{t+1}{t_D+1}} sh \frac{pl}{2h} + \sqrt{\frac{t+1}{t_D+1}} sh^2 \frac{pl}{2h} + 1 \right)$$
(14)

Функция t(z) определяется формулой (7), в которой t(t) суть функция (8), а z(t) - (14).

Поскольку концевой точке полосы в плоскости t соответствует t = 0, длину d пластической полосы получаем из формулы (14):

$$d = z(0) - l.$$

Зависимости длин пластических полос от нагрузки t_{∞} для различных значений t_0 , величины силы трения и соотношений длины l

Рис. 3.

трещин и расстояний 2*h* между ними приведены на рис. 3.

Полученные результаты позволяют применять деформационные критерии разрушения в случае локализации пластических деформаций в одной или нескольких полосах пластичности у вершин трещин сдвига, берега которых испытывают влияние сил трения при раскрытии трещины.

В.А. Кривень Розвиток смуг пластичності при зсуві стиснутого масиву, що містить паралельну систему тріщин.

РЕЗЮМЕ. Досліджено тонкосмугову локалізацію пластичних деформацій біля вершин паралельної системи рівних і рівновіддалених тріщин зсуву в стиснутому масиві. Враховано вплив сил тертя берегів при розкритті тріщин. Обгрунтовано можливість моделювання пластичних деформацій при вершині тріщини одною пластичною смугою. Отримано залежності довжин смуг від величини навантаження і рівня сили тертя берегів тріщини.

V.A. Kryven Plasticity bands development at the shear of the pressed massif with parallel system of cracks.

SUMMARY. Thinband localization of plastic deformations at the vertexes of parallel system of equal and equal distant cracks at the shear in the pressed massif is investigated. A banks friction forses influence at the crack opening is taked into account. A possibility of plastic deformation modeling at crack vertex by one plastic band is substantiated. Bands lengths dependances as functions of load magnitude and crack banks friction force level is received.

Список использованной литературы

- 1. Дударев Е.Ф., Почивалова Г.П., Бакач Г.П. Масштабные уровни потери сдвиговой устойчивости на стадии зарождения, формирования и распространения полос Людерса-Чернова // Физическая мезомеханика. 1999. Т. 2, №1-2. С. 105-114.
- 2. Надаи А. Пластичность и разрушение твердых тел. М.: Изд-во ИЛ. 1954. 647 с.
- 3. Кривень В.А. Узагальнене представлення зони пластичності при антиплоскій деформації пружнопластичного тіла із гострокінцевим концентратором напружень // Доп. АН УРСР. Сер.А. 1983. №2. С.31–34.
- 4. Черепанов Г.П. О проблеме неединственности в теории пластичности // Доклады АН СССР. – 1974. – Т. 218, №4. – С. 779-782.
- 5. Райс Дж. Локализация пластических деформаций // Теоретическая и прикладная механика // Труды XIV междунар. конгресса IUTAM /Под ред. Койтера В.Т. М.: Мир. 1979. С.439 471.
- 6. Крывень В.А. Влияние трения берегов на локализацию пластических деформаций в плоскости трещины продольного сдвига // Динамические системы. 2001. Т.17. С.137-142.
- Кривень В.А. Непрерывное и разрывное решения упругопластической задачи об антиплоской деформации тела с трещиной // Физ. -хим. мех. материалов. – 1985. – №6. – С.10 – 16.

Поступила в редколлегию 16.07.03